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SUMMARY

The line method of analysis is applied to the Navier-Cauchy equations

of elastic equilibrium to calculate the displacement field in a finite

geometry bar containing a variable depth rectangular surface crack under

extensionally applied uniform loading. The application of this method

to these equations leads to coupled sets of simultaneous ordinary differ-

ential equations whose solutions are obtained along sets of lines in a

discretized region. Using the obtained displacement field, normal stresses

and the stress intensity factor variation along the crack periphery are

calculated for different crack depth to bar thicknessratios. Crack

opening displacements and stress intensity factors are also obtained for

a through-thickness, center cracked bar with variable thickness. The

reported results show a considerable potential for using this method in

calculating stress intensity factors for commonly encountered surface

crack geometries in finite solids.

INTRODUCTION

The main goal of fracture mechanics is the prediction of the load

at which a structure weakened by a crack will fail. Knowledge of the

stress and displacement distributions near the crack tip is of fundamental

importance in evaluating this load at failure. During the early develop-

ment of crack mechanics most of the effort was focused on through-
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thickness cracks which could be characterized as two-dimensional. How-

ever, part-through cracks are the most common type of crack defect found

in actual service conditions.(ref. 1).

Because of its inherent three-dimensional character, only limited

analytical work has been done in the past on surface crack problems.

Early theoretical solutionsfor surface flaw problems usually involved

the discussion of semi-circular or semi-elliptical cracks in semi-infinite

solids (refs. 2 to 8). For this reason, results for finite geometry

stress intensity factors are usually reported in terms of magnification

factors applied to some convenient reference solution (ref. 9).

These correction factors are then to account for certain inherent finite

dimensions of the problem at hand. However, due to the formidable

task involved in obtaining solutions for semi-infinite solids, only

the front and back face magnification factors have been successfully

calculated in the past, with little consideration given to the finite

length or width normally encountered in engineering applications. In

addition, considerable scatter exists in the reported results as obtained,

by different investigators (ref. 9).

Recently, approximate solutions of the finite geometry surface

crack problem were obtained by the boundary integral equation method

(ref. 10) and the finite element method (ref. 11). These solutions,

however, have serious limitations since for acceptable accuracy in three-

dimensional problems, the number of elements needed is extremely large,

taxing even today's computers.

An alternate semi-analytical method suitable for the elastic solution

of the surface crack problem is the line method of analysis. Successful
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application of this method to finite geometry solids containing cracks,

has been demonstrated by Gyekenyesi and Mendelson (ref. 12). Although

the concept of the linemethod for solving partial differential equations -

is not.new (ref. 13), its application in the past has been limited in

the analysis of solids and structures.

It is the purpose of this report to present a simple and straight-

forward approach to the elastic analysis of the finite geometry surface

crack problem. Since the first treatment of this problem by Irwin in

1962, considerable analytical effort has been expanded towards the

development of an acceptable solution, but progress to this end has

been slow and limited. In this.report, the line method of analysis is

extended to part-through rectangular cracks in bars of finite dimensions

under normal tensile loadings. Results are obtained for various crack

depth to bar thickness ratios and effects of variable bar length and

thickness on crack opening displacements are summarized.

REDUCTION OF THE NAVIER-CAUCHY EQUATIONS TO SYSTEMS
OF ORDINARY DIFFERENTIAL EQUATIONS

Within the framework of linearized elasticity theory, the equations

of elastic.equilibrium in terms of displacements are

De 2
(X + G) -Le + GV2u = 0 (1)3x

(X + G) -e + GV2 v = 0 (2)
y) + w =

(X + G) -Le + GV w = 0 (3)@z



where the body forces are assumed to be zero and the dilatation is

au av aw
e =  + (4)

ax Sy az

For a finite geometry solid with rectangular boundaries we construct

three sets of parallel lines (fig. l(a)). Each set of lines is parallel

to one of the coordinate axes and thus perpendicular to the corresponding

coordinate plane. An approximate solution of equation (1) can then

be obtained by developing solutions,of ordinary differential equations

along the x-directional lines. As seen in the figure, there are a total

of k = NY x NZ such lines were NY is the number of lines along the

y-direction and NZ is the number of lines along the z-direction in a

given plane, respectively. We define the displacements along these

lines as ui, u2 , ... , u . The derivatives of the y-directional displace-

ments on these lines with respect to y are defined as v' 1  2 v' 12,

v' , and the derivatives of the z-directionaldisplacements with

respect to z are defined as w'11  w'j2, . . , W' . These displace-

ments and derivatives can then be regarded as functions of x only since

they are variables on x-directional lines. When these definitions are

used, the ordinary differential equation along a generic line ij (a

double subscript is used here for simplicity of writing) in figure l(b)

may be written as
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2 r
+ (1 - 2v) 2 + 2 u(u (u + ui- )

2 2(1 - v) h2 2 iji+,j

S+f (x) =

+ -(u + fuij + = 0 (5)
h 2 i,j+1 + ,j-1 2(1 - v)

z

where

dv' I dw'
f.ij(x) = dv+' -+ (6)13 dx ij dx i

-dv
dy

and

-dw
dz

Similar differential equations are obtained along the other x-directional

lines. Since each equation has the terms of the displacements on the

surrounding lines, these equations constitute a system of ordinary differ-

ential equations for the displacements ul, u2 ,. . ., u .

The set of Z second order differential equations represented by

(5) can be reduced to a set of 2£ first order differential equations by

treating the derivatives of the u's as an additional set of k unknowns,

i.e. defining

du du
u+l= d u = - etc. (7)Z+1 dx %+2 -dx
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The resulting 2Z equations can now be written as a single first order

matrix differential equation

dUd-= AU + R(x) (8)

where U and R are column matrices of 2£ elements each and Al is a

2£x2t matrix of the constant coefficients appearing in equations (5)

and (7).

In a similar manner, to solve equations (2) and (3) ordinary

differential equations are constructed along the y- and z-directional

lines respectively. These equations are also expressed in an analogous

form to equations (8); they are

dVd = A2V + S(y) (9)

dWdz = A3W + T(z) (10)

Equations (8) to (10) are linear first-order ordinary matrix

differential equations. They are, however, not independent, but are

coupled through the vectors R, S and T whose components are given by

equations similar to (6). The elements of the coefficient matrices A1 ,

A2 and A3 are all constants, being functions of the coordinate increments

and Poisson's ratio only.

Noting that a second-order differential equation can satisfy only

a total of two boundary conditions and since three-dimensional elasticity

problems have three boundary conditions.at every point of the bounding
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surface, some of the boundary data must be incorporated into the' surface

line differential equations. Hence, conditions of normal stress and

displacement are enforced through the constants of the homogeneous solu-

tions while shear stress boundary data must be incorporated into the

differential equations.of the surface lines. The application of the

specified shear conditions permits the use of central difference

approximations when surface line differential equations are constructed.

The details of constructing these equations are found in reference 14.

SOLUTION OF THE SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

The systems of ordinary differential equations (8) to (10) can be

solved by any of a number of standard techniques. The method used

herein was basically the matrizant or Peano-Baker method of integration

(ref. 15). For equation (8) the solution can be written as

Ax Ax x -An
U(x) = e U(0) + e e R(n)dn (11)

0

with similar solutions for equations (9) and (10). U(0) is the initial

value vector, determined from the boundary conditions. The conversion of

given boundary data into required initial values is discussed in more

detail in reference 14.

The matrizant eAlx is generally evaluated by its matrix series.

For larger values of x, when convergence becomes slow, additive formulas

may be used. In addition similarity transformations can be used to diago-

nalize the matrix Al. These various techniques for improving the accuracy

are discussed in detail in reference 14.
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Since equations.(8) to (10) and their boundary conditions are highly

coupled, it is generally impossible to directly evaluate their solutions.

Thus, a successive approximation procedure must be employed where

assumed values must be used initially for the required unknowns. The

cyclic resubstitutionof the obtained solutions into the coupling

vectors and the boundary conditions will usually converge to the correct

solution, depending mainly on the accuracy to which the required matrizant

can be evaluated.

Once the displacement field in the body has been calculated and

the successive approximation procedure has converged, the normal stress

distributions can be obtained directly by using the stress-displacement

equations. The shear stresses, however, can be evaluated only through

finite difference approximations for the required displacement gradients.

NUMERICAL RESULTS

Figure 2 shows a finite geometry bar containing a traction free

rectangular surface crack. Because of the symmetric geometry and loading,

only one-fourth of the bar has to be discretized as shown in figure 2(b).

The solution of this problem was obtained by using two different sets

of lines along the coordinate axes so that the convergence of the finite

difference approximations could be checked. In a given direction, uniform

line spacing was used in all computations although this is not absolutely

necessary. In general, an attempt was made to use a finer grid along

the direction of largest variable change. The crack edge location with

respect to the imposed grid was assumed to be halfway between nodes

specifying normal stress and displacement boundary conditions, respectively.



9

The successive approximation procedure required for decoupling the

three sets of ordinary differential equations was terminated when the

difference between.successively calculated displacements at every

point was less than a preset value (10-3). As expected, the convergence

rate of this successive approximation procedure was greatly dependent

on the initial guess for the required unknowns in the coupling vectors

and boundary conditions, For maximum computer efficiency, displacement

data obtained from the use of coarse grids was interpolated to obtain

improved starting values for the computations involving the final spacing

of lines. The required initial quantities for the preliminary coarse

grid calculations were taken to be zero in our work. All calculations

were performed on a UNIVAC 1106 computer, using double precision

arithmetic.

Selected results of the dimensionless surface crack opening dis-

placements are shown in figure 3. Note that the crack opening increases

rapidly with crack depth for 0.167 < - < 0.834, slightly exceeding even-- t -
a

the surface crack displacement of a through-thickness crack at - = 0.834.
t

The plane strain solution for a finite width center cracked bar is also

shown in figure 3 for reference. Final displacement values in this

report were obtained from a set of 100, 140 and 140 x,y and z-directional

differential equations, respectively.

The maximum crack opening displacement variation with crack depth is

shown in figure 4. For shallow cracks, this variation is almost a

alinear function of crack depth, reaching its maximum value near - = 0.90.

Interestingly, for a = 1.0 or a through-thickness crack, the maximum
t.
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crack opening displacement decreases slightly from this critical value.

In order to show the singularity of the stresses, the y-directional

normal stress in the crack plane is plotted in figure 5 for - = 0.5.

The results clearly indicate the singular nature of a along the crack

periphery. Note that in figure 5(a), this stress is maximum near the

cracked surface of the bar and is minimum at the z = 0 plane. Figure 5(b),

which shows the stress variation along the horizontal edge of the crack,

indicates that a is maximum at x= 0 and minimum at x = 2.0.
y

The variation of crack opening displacement as a function of bar

length for a.fixed crack geometry is shown in figures 6 and 7. As

can be noted from these figures, the finite length of the bar causes a

considerable increase in crack displacements for values of L < 4c.

Similar results were obtained in (ref. 12) for a through-thickness,

center cracked bar.

STRESS INTENSITY FACTOR

It is customary in fracture mechanics to describe the plane elasticity

crack opening displacement as a superposition of three basic deformation

modes (ref. 16). Since the problem shown in figure 2 has geometric

symmetry and is symmetrically loaded, only the opening mode of crack dis-

placement is obtained. In terms of the stress intensity factor for

the opening mode KI, the plane elasticity crack displacements near the

crack tip are given by (ref. 16)

vy= 2( KI 2- plane strain (12)y=0 G I 27r
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vjy=0 (1 + v)G KI - plane stress (13)

where R here is the distance from the crack edge. Note that R = z - (t-a)

along the horizontal edge and R = (W-c) - x along the vertical edge

of the crack. Since three-dimensional problems are neither in a state

of plane strain nor in"a state of plane stress, the definition of a

stress intensity factor for these problems must be first established.

Note that by definition the plane stress and plane strain stress intensity

factors are equal while the displacements are approximately 12.5 percent

different for v = 1/3. Since most published solutions for stress in-

tensity factors are based on plane strain assumptions, equation (12) is

selected to calculate the stress intensity factor. Rearranging this

equation so that the dimensionless crack opening displacements can be.

used leads to

Oc

CK = y=0

c (14)

where

4(1 - v )
I = 27
I o 2ir

A plot of equation (14) as /c 0 can then be used to calculate KI.

Since the crack opening displacement is a function of both the thickness
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and width variables, the previously defined stress intensity factor

varies in both the x and z-directions. It should be noted that this

description of KI is completely arbitrary and that it is questionable

if it has any real.significance in three-dimensional elasticity problems.

However, values of KI are presented here so that a comparison is

possible with published plane strain solutions (ref. 16).

The stress intensity factor variation along the crack periphery

for different crack depths in a given bar is shown in figures 8 to 14. An

important conclusion is immediately obvious from the results shown. The

point of maximum stress intensity factor for the rectangular surface

crack shown in figure 2 is at the end of the semi-major axis or near

the surface for all the crack geometries with ~ > 0.25. Furthermore,

the difference between the stress intensity factors at the surface and

at the end of the semi-minor axis increases with crack depth, provided

that the other dimensions of the problem remain fixed. These results,

therefore, indicate that even though the back face approaches the deep

edge of the crack, the point of maximum stress intensity factor does not

change. It should also be noted that the minimum stress intensity factor

is always at the corner of the crack and its change with crack depth is

minimal, in contrast to the maximum stress intensity factor which changes

about 400% over the crack depth range investigated.

Figure 15 shows the stress intensity factor variation along the

z-direction for the through-thickness, center cracked bar. Note that

KI is maximum near the surface and the results are symmetric about the

center of the bar. Similar results were obtained in (ref. 12) for a
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somewhat different geometry problem.

A plot of the stress intensity factors at the semi-major and semi-

minor axes of the crack as a function of crack depth is shown in

figure 16. These results indicate that for shallow cracks, < 0.25,

the stress intensity factor is no longer maximum at the surface but

reaches its greatest value at the semi-minor axis. Also note that

for deep cracks, the maximum stress intensity factor at the end of the

semi-major axis exceeds that obtained for a through-thickness crack.

By comparing the results, in this report for the rectangular sur-

face crack problem to those of a through-thickness crack in an identical

geometry solid, a part through crack correction factor, Cf can be ob-

tained for conveniently expressing the calculated maximum stress intensity

factor. In terms of this correction factor, let the surface crack results

be denoted by

K AX = Cf (K T) (15)

where K T is the maximum stress intensity factor for the through-thickness,

center cracked bar. From figure 15 for the geometry in question,

K = 3.65 a J\ A plot of Cf in the above equation as a function of

crack depth is shown in figure 17. As expected, Cf is considerably less

than one for shallow cracks, but for deep cracks, - > 0.7, the value of
t

Cf exceeds unity.

Since the solution for an elliptical crack in an infinitely large

body is readily available and convenient to apply, it is customary in

three-dimensional fracture mechanics to express results for finite geometry
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problems in terms of this solution and suitable magnification factors.

The crack opening displacement variation with bar length in figures 6

and 7 can be used to calculate a finite length magnification factor

for the selected crack geometry shown in figure 11. A plot of equation

(14), as the bar length is increased from L = 1.25, yields a 7.7% in-

crease in KI for L = 1.75, when compared to the infinitely long case.

Hence, MR = 1.077 which, by the way, differs considerably from the

plane stress finite length correction factor given in (ref. 17) for

the through-thickness, central crack problem. Other commonly applied

magnification factors are M w, Mf, Mb and M , where these factors account

for finite width, front face, back face and plasticity effects,

respectively. Values of these coefficients have been obtained previously

on a limited basis (ref. 9), but direct comparison of these numbers

with results in this report is not practical.

A plot of the surface crack opening displacement as a function of

bar thickness is shown in figure 18 for a through-thickness, center

cracked bar. Note that this displacement increases with increasing

bar thickness.

Figure 19 shows the stress intensity factor variation across the

bar thickness for the same center cracked bar. Isida's plane strain

solution (ref. 17), corrected for finite length and width, is also

plotted in this figure. These results indicate that the maximum value

of KI at the surface remains constant with variation in bar thickness,

while at the center of the bar, KI approaches Isida's plane strain
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solution. However, the obtained minimum value of KI is about 17% higher

than Isida's result, which would indicate that the plane elasticity

finite geometry magnification factors are not equal to those obtained

from three-dimensional calculations. It should also be noted that using

the calculated displacements in equation (13) rather than equation (12)

would result in a 12.5% lower value of KI than that shown in figure 19.

Furthermore, the maximum displacements in figure 18 differ less than

10% as expected, while for t = 5.5 in figure 19, KI varies from

3.0 ao V~ - to 3.65 a o  - or about 22%.

Although the stress intensity factors for these problems could

be determined with reasonable accuracy, the associated type of singu-

larities are difficult to evaluate because values of the normal stresses

are needed within a distance of 0.05c or less from the crack edge. With

the equal spacing of lines used in these examples, the minimum node

location for these problems is about 0.06c, For this range of crack

edge distance R, the singularity of the stresses is not defined.

CONCLUSIONS

The line method of analysis presented affords a practical straight

forward way for analysis of three-dimensional crack problems, at least

for bodies with reasonably regular boundaries. Because parts of the

solution are obtained as continuous functions along the lines chosen,

relatively good accuracy can be obtained with coarse grids. Results of

the analysis include the displacements and normal stresses at every

node inside .the body from which the stress intensity factor variations

were easily calculated. In addition it should be noted that the common
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semi-elliptical surface crack problem could also be analyzed by

merely changing the boundary conditions at certain nodes in the crack

plane. Introduction of plasticity into the analysis could also be

accomplished by changing the coupling terms in equations (8) to (10).

Since these have to be determined by an iterative process in any case,

it would seem possible to solve the elastoplastic problem by a simple

extension of the present method. Whether this approach is practical

requires further investigation.
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(a) Three sets of lines parallel to x-, y-, and z-coordinates and
perpendicular to corresponding coordinate planes.

y
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(b) Set of interior lines parallel to x-coordinate.

Figure 1. - Sets of lines parallel to Cartesian coordinates.
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(b) DISCRETIZED REGION OF BAR WITH
RECTANGULAR SURFACE CRACK.

Figure 2. - Bar with rectangular surface crack
under uniform tension.
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Figure 3. - Surface crack opening displacement variation
as a function of crack depth for a rectangular bar under
uniform tension.
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Figure 4. - Maximum crack opening displacement varia-
tion with crack depth for a rectangular bar under uni-
form tension.
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(b) DIMENSIONLESS y-DIRECTIONAL NORMAL STRESS
VARIATION ACROSS BAR THICKNESS.

Figure 5. - Dimensionless y-directional normal stress
distribution in the crack plane for a bar under uni-
form tension containing a rectangular surface crack.
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Figure 6, - Surface crack opening displacement variation
as a function of bar length for a rectangular bar under
uniform tension.
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Figure 7. - Maximum crack opening displacement variation
with bar length for a rectangular bar under uniform ten-
sion.
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Figure 8. - Variation of stress intensity factor KI along the
crack periphery for a bar under uniform tension contain-
ing a rectangular surface crack.
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Figure 9. - Variation of stress intensity factor KI along the
crack periphery for a bar under uniform tension contain-
ing a rectangular surface crack.
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Figure 10. - Variation of stress intensity factor KI along the crack
periphery for a bar under uniform tension containing a rectangu-
lar surface crack.
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Figure 12. - Variation of stress intensity factor KI along the crack periphery for
a bar under uniform tension containing a rectangular surface crack.
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Figure 11. - Variation of stress intensity factor KI along the crack
periphery for a bar under uniform tension containing a rectangu-
lar surface crack.
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Figure 13. - Variation of stress intensity factor KI along the crack
periphery for a bar under uniform tension containing a rectangu-
lar surface crack.
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Figure 14. - Variation of stress intensity factor KI along the crack
periphery for a bar under uniform tension containing a rectangu-
lar surface crack.
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Figure 15. - Variation of stress intensity factor KI along the crack periph-
ery for a bar under uniform tension containing a central through-thick-
ness crack.
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Figure 16. - Stress intensity factor variation with crack alt

depth for a bar under uniform tension containing a
rectangular surface crack. Figure 17. - Surface crack correction factor variation

with crack depth for a bar under uniform tension.
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Figure 18. - Surface crack opening displacement varia-
tion as a function of bar thickness for a center
cracked rectangular bar under uniform tension.
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Figure 19. - Stress intensity factor variation as a function of bar
thickness for a center cracked rectangular bar under uniform
tension.
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